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The effects of the human endotoxin challenge on tissue pharmacokinetics are

unknown. In the present study, we aimed to assess the effect of the endotoxin chal-

lenge on interstitial fluid pharmacokinetics of tedizolid in healthy volunteers using

intramuscular microdialysis. Eight healthy male subjects were treated with 200 mg of

tedizolid phosphate for 6 days. On Day 6, an intravenous bolus of lipopolysaccharide

(LPS) (2 ng/kg body weight) was administered. LPS infusion did not affect plasma

pharmacokinetics of tedizolid. In contrast, following LPS infusion, median muscle tis-

sue fAUC (0.83 [0.75–1.15] vs. 1.14 [1.11–1.43] mg � h/L, P = .0078) and muscle

tissue fCmax (0.15 [0.14–0.19] vs. 0.19 [0.18–0.24] mg/L, P = .0078) were signifi-

cantly increased by 38% and 24%, respectively. The human endotoxin challenge was

associated with increased tissue concentrations of tedizolid, without affecting its

plasma concentration–time profile. The human endotoxin challenge combined with

microdialysis may be used to investigate the influence of systemic inflammation on

tissue pharmacokinetics.
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1 | INTRODUCTION

Tissue pharmacokinetics vary substantially between healthy volun-

teers and patients with inflammatory conditions or diseases.1 Antibi-

otic pharmacokinetics are usually studied in healthy volunteers. In

clinical practice, antibiotic use often coincides with infection-related

systemic or local inflammation, which may affect blood and

tissue pharmacokinetics of antimicrobials.2 This may be important for

antimicrobial therapies, whose success is highly dependent on their

delivery to the target site (i.e., the site of infection). Because pharma-

cokinetic studies can impose a significant burden on infected patients,

a disease model that facilitates the study of the effects of systemic

inflammation on tissue pharmacokinetics would be desirable. The

human endotoxin challenge is an established model of inflammation

and has been used extensively to investigate many aspects of sys-

temic inflammatory processes. However, it is not commonly used for

tissue pharmacokinetic studies.3,4

Tedizolid, a second-generation oxazolidinone, is indicated for the

treatment of skin and skin structure infections. Therefore, it is worth-

while to investigate the effects of systemic inflammation on the distri-

bution of tedizolid in soft tissue. In the present study, intramuscular

microdialysis was used to access a soft tissue compartment. We aimed

to assess the effect of the endotoxin challenge on interstitial fluid (ISF)

pharmacokinetics of tedizolid in muscle tissue in healthy volunteers.
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2 | METHODS

We previously reported that tedizolid failed to mitigate the lipopoly-

saccharide (LPS)-induced cytokine response in healthy subjects.5 In a

sub-study in 8 of the 14 included subjects, we additionally performed

intramuscular microdialysis to assess the effect of LPS infusion on

the ISF concentrations of tedizolid. We included male subjects aged

18–55 who had an unremarkable medical history and physical exami-

nation. Subjects with a body weight below 60 or over 95 kg, smokers

and subjects with allergies to substances used in this study were

excluded.

In brief, each subject received tedizolid phosphate 200 mg

(Sivextro®, Merck Sharp & Dohme Corp, Kenilworth, NJ,

United States) orally once daily for 3 days, followed by 3 days of tedi-

zolid phosphate 200 mg intravenously over 60 min once daily. This

dosing regimen is recommended for the treatment of skin infections

according to the package leaflet. Considering the high oral bioavail-

ability (over 90%) and the half-life of about 12 h, steady-state phar-

macokinetics were reached no later than on Day 3. Blood and

intramuscular microdialysis sampling were performed under steady-

state conditions on Day 5 (control day) and on Day 6 (LPS day). On

Day 6 (i.e., the last day of treatment), the endotoxin challenge was

performed at the same time as the last tedizolid infusion. Each subject

received 2 ng/kg body weight LPS (Escherichia coli O113 Reference

Endotoxin, CC-RE Lot 3) intravenously over 1–2 min followed by an

8-h infusion of 0.9% saline solution at an infusion rate of 100 mL/h.

In addition, 1 g of paracetamol (Paracetamol Genericon® 500 mg,

Genericon Pharma GmbH, Graz, Austria) was given orally to prevent

and relieve endotoxin-associated symptoms.

Microdialysis was performed as previously described.6 On the

morning of Day 5, an intramuscular microdialysis probe (membrane

length: 10 mm; molecular weight cut-off: 20 kDa) was inserted into

thigh muscles and constantly perfused with 0.9% saline at 1 μL/min for

8 h. This probe remained in the same location throughout the sampling

period on Days 5 and 6. Since relative recovery never reaches 100%,

concentrations obtained by microdialysis must be corrected by a factor

that is determined by retrodialysis. In brief, the perfusion solution con-

taining a known concentration of the tedizolid was pumped through

the microdialysis system. By measuring the tedizolid concentration in

the dialysate fluid, the relative loss, which equals the relative recovery,

can be calculated (recovery [%] = 100 � [concentrationdialysate/con-

centrationperfusate � 100]).7 These retrodialysis experiments were per-

formed following the 8-h sampling phase on both sampling days (Days

5 and 6). Relative recovery calculation and dialysate concentration

correction were performed as previously described.6 Tedizolid concen-

trations were determined by high-performance liquid chromatography-

ultraviolet (HPLC-UV), and plasma protein binding by ultrafiltration

as previously described.8 We performed a non-compartmental analysis

to calculate pharmacokinetics of tedizolid in tissue. Results are

reported as median with interquartile range (IQR). Statistical testing

between the control and LPS day was done using the non-parametric

Wilcoxon matched-pairs signed-rank test. Because of the exploratory

nature of this study, no formal sample size calculation was performed.

This project was conducted following the International Council

for Harmonisation-Good Clinical Practice (ICH-GCP) guidelines and

the Declaration of Helsinki. All study participants were informed and

gave their oral and written consent prior to inclusion. The study was

registered at the EudraCT database (EudraCT 2018-004743-23). It

was approved by the Ethics Committee of the Medical University of

Vienna (EC 2251/2018) and the Austrian Agency for Health and Food

Safety.

2.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries (in www.guidetopharmacology.org) and are perma-

nently archived in the Concise Guide to PHARMACOLOGY 2019/20.

3 | RESULTS

A total of eight healthy male subjects underwent plasma and micro-

dialysis sampling on Days 5 and 6 of treatment with tedizolid 200 mg

once daily. The median (IQR) age was 26 (24–29.5) years, and the

median (IQR) body mass index was 24.2 (21.5–26.5) kg/m2. Tedizolid

treatment was well tolerated. In a recent article examining the anti-

inflammatory effects of tedizolid, we described the clinical symptoms

and cytokine release during endotoxaemia in these participants.5 The

reactions were as expected, including a pronounced cytokine

response and flu-like symptoms.5 Figure 1 shows the free plasma and

muscle ISF concentration�time curves of tedizolid on the control day

(Day 5) and the day of LPS infusion (Day 6). While the plasma

What is already known about this subject

• Tissue pharmacokinetics vary substantially between

healthy volunteers and patients with inflammatory condi-

tions or diseases.

• The human endotoxin challenge has been used exten-

sively to investigate many aspects of systemic inflamma-

tion but rarely for pharmacokinetic studies.

What this study adds

• The endotoxin challenge was associated with increased

muscle tissue concentrations of tedizolid, without affect-

ing its plasma concentration–time profile.

• The human endotoxin challenge combined with microdia-

lysis may be a promising tool to evaluate the effect of

systemic inflammation on target site pharmacokinetics.
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concentration profiles were similar between the two days, the tissue

concentrations were significantly higher on the day of the endotoxin

challenge, especially in the initial 4 h. In plasma, the free 8-h area

under the curve (fAUC0–8) (median [IQR]; 2.6 [2.2–2.8] vs. 2.5

[2.4–3.0] mg � h/L; P = .64), free maximum concentration (fCmax)

(0.61 [0.50–0.71] vs. 0.57 [0.55–0.63] mg/L; P = .74), and protein

binding (77.6% [76.7–78.2] vs. 77.7% [76.4–78.4]; P = .38) were simi-

lar between the control and LPS day (Figure 2A–C). In contrast, fol-

lowing LPS infusion, median muscle ISF fAUC (0.83 [0.75–1.15] vs.

1.14 [1.11–1.43] mg � h/L, P = .0078) and muscle ISF fCmax (0.15

[0.14–0.19] vs. 0.19 [0.18–0.24] mg/L, P = .0078) were significantly

increased by 38% and 24%, respectively (Figure 2D,E). This increase

was observed in each of the eight study participants. The median tis-

sue half-life of tedizolid over Days 5 and 6 was 14.8 h (IQR

11.7–18.8), indicating that steady-state tissue pharmacokinetics

(or five half-lives) were achieved after a median of 3.1 days (IQR

2.4–3.9). After excluding the only subject with a significantly longer

half-life (85 h) from the analysis, the difference in ISF Cmax and AUC

between the two study days remained significant. The relative recov-

ery rates calculated from retrodialysis were constant over the two

sampling days and independent of LPS infusion (control vs. LPS:

85.8% [82.6–87.5] vs. 83.1% [81.1–87.0], P = .84) (Figure 2F).

4 | DISCUSSION

In this microdialysis study, the human endotoxin challenge was associ-

ated with unchanged plasma pharmacokinetics but increased muscle

ISF penetration of tedizolid. The difference in muscle ISF

F IGURE 1 Free tedizolid concentration–time profiles in plasma
and in muscle interstitial fluid as determined by microdialysis on the
day before (‘Control’) and the day of the endotoxin challenge (‘LPS’).
Concentrations are mean ± standard deviation. Endotoxin and
tedizolid were administered together at time point 0. The dots
showing intramuscular concentrations represent the mean
concentration at the midpoint of the sampling interval (i.e., the
concentration of the sampling interval between 0 and 30 min is
depicted by a dot at 15 min)

F IGURE 2 Comparisons of the
plasma and microdialysis results
between the day before vs. the day of
the endotoxin challenge (‘Control’ vs.
‘LPS’). (A, B) Free 8-h area under the
curve (fAUC0–8) and free maximum

concentration (fCmax) in plasma.
(C) Plasma protein binding (%)
assessed by ultrafiltration. (D, E) fAUC
and fCmax in muscle interstitial fluid
assessed by microdialysis. (F) Relative
recovery rates (%) assessed by
retrodialysis
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concentration was especially evident in the initial 4 h after LPS infu-

sion and seemed to diminish from then on, consistent with the clinical

and biochemical response to LPS.5,9 In general, the tedizolid tissue

concentrations from our study were comparable with those observed

by Stainton et al.10 but lower than those observed by Sahre et al.11

After five half-lives, it can be assumed that steady-state pharmacoki-

netics are reached (or at least 97%).12 This means that a dynamic equi-

librium exists and that further doses do not lead to further

accumulation. Our data suggests that this steady state was reached

after 3 days in the tissue of most participants and that there was no

further accumulation between Days 5 and 6.

Stainton et al.10 compared tedizolid tissue concentrations

between healthy volunteers and patients with diabetic foot infections

using microdialysis. Compared with healthy volunteers, tissue-to-

plasma ratios of tedizolid were numerically higher in patients with dia-

betic foot infections, without reaching statistical significance.10

Another microdialysis trial in patients with diabetic infections showed

higher concentrations of ertapenem in inflamed tissue.13 In contrast,

increased penetration was not shown for fosfomycin and ciprofloxa-

cin in similar studies.14,15 It is unclear why increased penetration was

only observed for some of the antibiotics studied. Notably, diabetic

infections differ from the setting investigated in our study. Although

diabetic infections cause an inflammatory response, they are also

characterized by impaired blood perfusion, which could reduce drug

penetration into tissue.16 These two opposing effects may affect dif-

ferent compounds to varying degrees. Therefore, the results in dia-

betic foot infections must be compared with ours with caution.

The exact mechanisms causing the enhanced penetration of tedi-

zolid into muscle ISF remain unclear. It could be speculated that an

LPS-induced increase in tissue perfusion and vascular permeability

might have played a role. TNF-α, a cytokine that is released during

endotoxaemia, caused vasodilation of vessels that were pre-treated

with LPS.17 Wellhoener et al.18 found evidence of a greater than two-

fold increase in adipose tissue blood perfusion after LPS infusion in

healthy volunteers. In addition, TNF-α was shown to increase vascular

permeability by interacting with the transient receptor potential

channel.19 LPS administration increased vascular permeability

in vitro20 and in animal studies21; an endotoxin challenge trial includ-

ing healthy volunteers, however, failed to confirm increased vascular

permeability.22

Our study has several limitations. First, only the inclusion of an

additional control group could have confirmed that differences in tis-

sue concentrations were caused only by LPS and not by other contrib-

uting factors. Second, the control day was always the day before the

day of the endotoxin challenge, which may have introduced a potential

bias. Randomization between the two study days would not have been

possible since the effects of the endotoxin challenge may persist for

several months. The subjects received paracetamol on Day 6 but not

Day 5. Although a possible interaction between paracetamol and tedi-

zolid pharmacokinetics cannot be ruled out, we found no evidence of

such an interaction in the literature. Administration of paracetamol the

day before the endotoxin challenge or not administering paracetamol

to symptomatic participants during endotoxaemia could have solved

this problem. However, neither would have been justified in our opin-

ion. However, the two sampling days were under steady-state condi-

tions on Days 5 and 6 of the tedizolid treatment. The constant plasma

pharmacokinetics support the comparability of both sampling days.

Third, the results rely on consistent performance of the microdialysis

system between Days 5 and 6. Simmel et al.23 performed a proof-of-

principal study and showed that microdialysis catheters can be used

for 4 days. Kirbs et al.24 also used microdialysis reliably for 80 h, sup-

porting the long-term stability of microdialysis over several days. In

addition, relative recovery was similar between the control and the

LPS day, confirming similar diffusion across the microdialysis mem-

brane on the two sampling days. Fourth, we studied only one com-

pound, and it is unclear whether our results are generalizable to other

antibiotics. We speculate that antibiotics with similar pharmacokinetic

profiles (i.e., lipophilic and high volume of distribution) might exhibit a

similar increase in tissue penetration after LPS administration.

Our findings warrant further similar studies to confirm this for

other antibiotics. If future research can reproduce the effect of LPS

on tissue penetration of other antimicrobial agents, the human endo-

toxin challenge could be used in combination with microdialysis to

identify antibiotics whose tissue pharmacokinetics are more or less

likely to be affected by systemic inflammation.

5 | CONCLUSIONS

To the best of our knowledge, this is the first human endotoxin chal-

lenge study investigating the effect of LPS on tissue pharmacokinetics.

Intravenous administration of LPS appears to enhance the penetration

of tedizolid into muscle ISF without affecting its plasma

concentration–time profile. Although this observation was consistent

across all eight subjects, the lack of a control group makes it impossi-

ble to conclusively infer the causal relationship between endotoxin

exposure and increased tedizolid tissue concentrations. Moreover, it is

unclear whether the delivery-enhancing effects of LPS are universal or

specific to particular drugs or drug classes. Considering our findings,

the human endotoxin challenge may be a promising tool to evaluate

the effect of systemic inflammation on target site pharmacokinetics.
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